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Abstract We use a large initial condition suite of simulations (30 runs) with an Earth system model to
assess the detectability of biogeochemical impacts of ocean acidification (OA) on the marine alkalinity
distribution from decadally repeated hydrographic measurements such as those produced by the Global
Ship-Based Hydrographic Investigations Program (GO-SHIP). Detection of these impacts is complicated by
alkalinity changes from variability and long-term trends in freshwater and organic matter cycling and ocean
circulation. In our ensemble simulation, variability in freshwater cycling generates large changes in alkalinity
that obscure the changes of interest and prevent the attribution of observed alkalinity redistribution to
OA. These complications from freshwater cycling can be mostly avoided through salinity normalization of
alkalinity. With the salinity-normalized alkalinity, modeled OA impacts are broadly detectable in the surface of
the subtropical gyres by 2030. Discrepancies between this finding and the finding of an earlier analysis
suggest that these estimates are strongly sensitive to the patterns of calcium carbonate export simulated
by themodel. OA impacts are detectable later in the subpolar and equatorial regions due to slower responses
of alkalinity to OA in these regions and greater seasonal equatorial alkalinity variability. OA impacts
are detectable later at depth despite lower variability due to smaller rates of change and consistent
measurement uncertainty.

1. Introduction

Ocean acidification (OA) is one of many changes linked to carbon dioxide (CO2) emissions from mankind’s
activities. The term ocean acidification refers to the decreases in seawater pH and the changes in seawater
chemistry resulting from the continued ocean uptake of approximately one quarter of anthropogenic CO2

released each year [Le Quéré et al., 2015]. A portion of the protons (H+) released into seawater as pH decreases
are neutralized by reaction with carbonate ion according to the net reaction (equation (1)):

H2Oþ CO2 aqð Þ þ CO2�
3 ⇔ 2HCO�

3 (1)

This net reaction summarizes how absorbed CO2 can combine with water (H2O) and neutralize basic

carbonate ion (CO2�
3 ) into bicarbonate ion (HCO�

3 ). Decreasing CO2�
3 concentration disfavors calcium

carbonate (CaCO3) mineral formation. Earth System Models simulate ~50% surface CO2�
3 concentration

reductions by 2100 under business-as-usual CO2 emission scenarios [Wolf-Gladrow et al., 1999; Orr et al.,
2005; Bopp et al., 2013].

A critical question in OA research is how seawater chemistry changes will impact marine organisms. Many
marine organisms use CaCO3 to form shells and other hard parts, including organisms in the lower trophic
levels of marine food webs (e.g., pteropods and coccolithopores), in key roles as ecosystem engineers (e.g.,
corals and calcifying algae), and that are fished and aquacultured commercially (e.g., clams and oysters).
While it remains unclear how the entire ecosystems respond to OA-driven changes in seawater chemistry
[Pfister et al., 2014], laboratory and field studies suggest that the ability of organisms to form CaCO3 hard parts
is negatively impacted [e.g., Orr et al., 2005; Doney et al., 2009; Bednaršek and Ohman, 2015].

Total titration seawater alkalinity (AT) is a convenient measurable seawater property for monitoring interac-
tions between seawater chemistry and biological calcification. AT is measured as the number of moles of
strong acid required to bring seawater to a reference pH and can therefore be thought of as a measure of
how well-buffered seawater is against pH changes. Each year, 0.5 to 1.6 Gt C is removed from the surface
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ocean and exported to depth as biogenic CaCO3, taking with it two moles AT per mole carbon [Dunne et al.,
2005, 2012b; Berelson et al., 2007]. This “hard tissue pump” in the pelagic ocean is the dominant factor respon-
sible for the nearly global AT increase with ocean depth (see Carter et al. [2014] for discussion of AT measure-
ments made prior to 2009). If we assume that the intensity of the hard tissue pump will be diminished by OA,
then natural AT depth gradients should relax, and changes in the AT distribution from this relaxation should
eventually become detectable. While the climate impacts of this AT redistribution are not the focus of this
study, we note this relaxation is a potentially significant negative feedback for anthropogenic CO2 accumula-
tion [Doney et al., 2009].

Here we ask how long it will take before a change in AT distributions, measured decadally as part of the Global
Ocean Ship-based Hydrographic Investigations Program (GO-SHIP), could be attributed to OA despite AT
measurement uncertainties and variability. Ilyina et al. [2009] answered this question using the global
Hamburg Ocean Carbon Cycle Model to estimate OA-related AT changes and decadal differences in measure-
ments to estimate AT variability. They estimated that alkalinity changes could become detectable after 2040.
However, their fixed-circulation model was unable to resolve AT changes from concurrent shifts in other
processes such as ocean circulation, organic matter cycling, and freshwater cycling. Also, their globally uni-
form data-based AT variability estimate prevented them from separately considering the various components
of AT variability or assessing how these components might vary regionally. In the present work, we aim to
expand upon the Ilyina analysis by addressing these complications.

Biogenic CaCO3 cycling is only the second most important control on the alkalinity distribution at the ocean
surface, after freshwater cycling; alkalinity is diluted or concentrated when freshwater is added or removed,
respectively [Jiang et al., 2014]. Intensification of the hydrological cycle is an expected consequence of global
warming [Held and Soden, 2006] that has already been observed in surface salinity [Durack et al., 2012], so a
detected AT change as salty areas of the ocean get saltier and fresh areas of the ocean get fresher may
have nothing to do with a biological response to OA. This challenges our ability to attribute AT changes we
detect to the biogeochemical consequences of OA. In addition, to be detected, a change must be larger
than the background variability, and AT variability from freshwater precipitation and evaporation is substan-
tial. To a lesser extent than CaCO3 cycling, organic matter cycling also affects seawater AT through the
exchange of protons during organic matter formation (proton uptake) and remineralization (proton release)
[Wolf-Gladrow et al., 2007]. Changes to the hard and soft tissue pumps are another possible consequence of
climate change, as changing circulation affects the return of micronutrients and macronutrients to the sur-
face ocean [Rost et al., 2008] and the age distribution of deep waters. The model used by Ilyina et al. [2009]
has fixed ocean circulation and freshwater cycling and is unable to resolve these potential changes.

Salinity normalizations and the idea of “potential AT” (i.e., nitrate-adjusted AT) have been long used to address
the influence of freshwater and organic matter cycling, respectively, on AT distributions [Brewer et al., 1975;
Rubin and Key, 2002]. In this tradition, Carter et al. [2014] proposed Alk* as a tracer that isolates AT variability
owing to CaCO3 cycling from the variability due to freshwater and organic matter cycling. Alk* is defined as
follows:

Alk* ¼ AT þ 1:26N � 66:4S μmol kg�1 (2)

where Alk*, AT, and N have units of μmol kg�1 and S is unitless. The added termwith nitrate N accounts for the
in situ AT titration that occurs with organic matter remineralization, and the subtracted term with salinity S
effects a salinity normalization. The constant 1.26 is based on an empirical relationship between calcium
ion and nitrate found by Kanamori and Ikegami [1982], while the 66.4 constant is the volume-weighted mean
surface AT to S ratio [Carter et al., 2014]. Alk* has fewer sources of variability than AT, potentially allowing a
trend to be detected earlier and bemore confidently attributed to OA versus other aspects of climate change.
We test whether this is the case.

Internal variability is a complication that the constant-circulationmodel used by Ilyina et al. [2009] is unable to
resolve. Internal variability refers to natural fluctuations in heat and freshwater budgets and ocean circulation
that occur over a range of spatial and temporal scales, including everything frommixing over hours to days to
large-scale synoptic storm events in the atmosphere to large-scale climate modes of variability (e.g., El Niño
Southern Oscillation, or ENSO) [Frölicher et al., 2009; Rodgers et al., 2015]. These oscillations are important for
shaping ocean property distributions on the decadal timescales we are concerned with. While internal
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variability is a small barrier to detecting
trends in rapidly changing pH [Keller
et al., 2014; Rodgers et al., 2015], internal
variability has not yet been thoroughly
considered for AT, which has a much smal-
ler OA response compared to measure-
ment precision than pH. The data-based
variability estimate used by Ilyina et al.
[2009] implicitly includes the effects of
internal variability, but we argue that our
novel ensemble approach provides a bet-
ter internal variability estimate. This is
because the Ilyina analysis only considers
changes between two points in time
along four hydrographic sections, while
our ensemble approach allows us to esti-
mate internal variability globally from 30
simulations of over 100+ years.

Finally, we questionwhether shallow depths
are indeed the ideal place to look for deca-
dal OA-related AT changes. On decadal
timescales, we expect surface trends to be

larger than trends at depth because CaCO3 formation is concentrated in the surface oceanwhile CaCO3 dissolu-
tion is distributed across the broad deep ocean. However, variability complicating detecting AT changes may be
largest in the more dynamically active surface ocean (e.g. seasonal and interannual variability in evaporation
and precipitation). We therefore also investigate whether trends from changes in pelagic calcification may be
reasonably detected earlier at depth.

In summary, we aim to complement and expand upon the Ilyina analysis with several additional considerations:

1. We consider how freshwater, organic matter cycling, and circulation changes impact AT distributions and
may complicate interpretation of detected trends.

2. We test to what extent a salinity-normalized composite tracer such as Alk* [Carter et al., 2014] could cir-
cumvent these additional complications or decrease the length of time required for detection of a trend.

3. We test the degree to which internal variability is an additional complication―beyond subdecadal variabil-
ity and measurement uncertainty―and estimate internal variability from a large ensemble of simulations
instead of hydrographic data.

4. We consider decadal chemistry changes at depth as well as at the surface.
5. We model with different assumptions as to drivers of CaCO3 cycling.
6. We use an ensemble approach to characterize internal variability, which takes into account changes in the

amplitude of major modes of variability over climate change timescales.

2. Methods
2.1. Model Simulations

We estimate AT, nitrate (N), and salinity (S) concentration changes using the fully coupled carbon-climate
Earth System Model ESM2M developed by the Geophysical Fluid Dynamics Laboratory (GFDL). The model
consists of a 1° Modular Ocean Model version 4p1 (MOM4p1) MOM4p1 ocean version [Griffies et al., 2009]
coupled to a 2° version of the AM2 atmospheric model [Anderson et al., 2004]. Ocean biogeochemistry is mod-
eled with version 2 of the Tracers of Ocean Plankton with Allometric Zooplankton (TOPAZ2) biogeochemical
package [Dunne et al., 2013]. The control and experiment simulations diverge after more than 1000 years of
physical and biogeochemical spin-up in the model year 1860 as described by Dunne et al. [2012a, 2013]. The
experiment simulations then follow the historical atmospheric CO2 and non-CO2 greenhouse gas concentra-
tion pathway to 2005, and the high-emissions business-as-usual greenhouse gas Representative
Concentration Pathway 8.5 (RCP8.5 [Van Vuuren et al., 2011]) afterward (Figure 1).

Figure 1. Atmospheric pCO2 growth histories for our (blue) Setup 1
ensemble and (red) Setup 2 simulations. The vertical dotted lines
indicate the time windows considered by our analysis. A (yellow)
growth history estimated by Joos et al. [1996] for the IS92a emission
scenario used by Ilyina et al. [2009] is provided for reference.

Global Biogeochemical Cycles 10.1002/2015GB005308

CARTE ET AL. DETECTING OA IMPACTS WITH ALKALINITY 597



We use a large initial condition ensemble suite with ESM2M to address timescales of emergence/detectability.
With this approach the ensemble mean across all ensemble members represents the secular trend, while the
individual ensemble members reveal a myriad of possible influences of internal variability. This approach has
a longstanding history in weather prediction and climate dynamical studies and was first applied to ocean bio-
geochemistry by Frölicher et al. [2009]. Our 30 member ensemble of experiment simulations diverge from one
another in model year 1950. The initial 1950 atmosphere/ocean/land/sea ice states for ensemble simulations 2
through 30 were taken frommodel state snapshots of themidnights of 1–29 January 1950 of ensemble simula-
tion 1 [Rodgers et al., 2015].Wittenberg et al. [2014] showed that this is sufficient to randomize the ENSO index in
this model within five model years. We begin consideration of trends starting with the 1990 introduction of
Certified Reference Materials for AT (which allow decadal AT comparisons with quantifiable uncertainties)
[Dickson et al., 2003], so these ensemble members can be confidently assumed to have randomized internal
states for our purposes. Tracer changes are expressed relative to changes in a single preindustrial control simu-
lation with a constant atmospheric pCO2 of 286ppmv. Control simulation properties were smoothed using a
20 year runningmean to minimize the influence of internal variability in this simulation. We refer to these simu-
lations as the Setup 1-ensemble simulations and the Setup 1-control simulation. This model setup well captures
themeasured AT and inferred Alk* distributions between 1990 and 2009 as described byMillero et al. [1998] and
Carter et al. [2014], respectively (Figure 2). The model reproduces the strong correlations between AT and S and
between Alk* and phosphate concentrations observed in measurements. Like S, AT is primarily controlled by

Figure 2. A comparison of (a) meanmodeled AT from the 1990s in the historical portion of the ESM2M simulation (Setup 1, ensemble member 1) to (b) the measured
AT distribution from 1970 to 2009 as compiled and gridded by Carter et al. [2014], and a comparison between mean Alk* inferred from (c) model outputs and
(d) measurements.
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freshwater cycling, and like phosphate, Alk* is primarily controlled by biological cycling. The correlation coeffi-
cient between the measured and modeled AT distributions in Figure 2 is 0.81 (versus 0.92 for Alk*). The largest
disagreements in AT and Alk* are in areas with strong influences from rivers (e.g., the Arctic Ocean) or upwelling
(e.g., the Eastern Tropical Pacific and Atlantic). Given the strong correlations, the model likely adequately repre-
sents the dominant controls on the AT and Alk* distributions for our purposes.

We use an additional pair of simulations with this model to identify the pattern of AT changes that would be
expected from OA alone (i.e., with an increase in atmospheric pCO2, but without associated changes in ocean
circulation and freshwater cycling due to climate change). The first of this pair is a 70 year control simulation
with identical spin-up as used in Setup 1 and atmospheric CO2 partial pressure held constant at 286 ppmv.
The second is a simulation over the same time period with mixing and freshwater cycling forced to be
identical to the control simulation, but with an atmospheric pCO2 increasing at 1% per year for the final 70 years
(Figure 1). This was accomplished by running two identical instances of the TOPAZ biogeochemistry model
simultaneously in the ESM2M Earth system model. We call the year in which the control and experiment simu-
lations diverge “year 1860.” With identical ocean circulation, the AT disparity that evolves over the 70 year
experiment is attributable to biogeochemical OA feedbacks only. In this regard, this set of simulations is analo-
gous to the simulation used in the Ilyina analysis. We also use the fixed 286ppmv control simulation model to
assess seasonal AT and Alk* variability (becausemonthly outputs weremost accessible from this simulation). We
refer to these simulations as Setup 2-control simulation and Setup 2-experiment simulation.

Dunne et al. [2013]’s description of TOPAZ2 should be consulted for a full account of the biogeochemical
model and its numerous potential feedbacks between climate and biogeochemical cycling, but we summar-
ize the feedbacks most directly related to OA here. The TOPAZ2 biogeochemical package parameterizes
three feedbacks between CaCO3 cycling and the OA-sensitive CaCO3 saturation state Ω, which is defined
as follows:

Ω ¼
�
Ca2þ

�½CO3
2��

KspCaCO3

(3)

KspCaCO3 is the temperature, salinity, and pressure-dependent solubility product specific to a given CaCO3

mineral form (calcite or aragonite, for our purposes), calculated following the United Nations Educational,
Scientific and Cultural Organization (UNESCO) 87 guidelines [United Nations Educational, Scientific and
Cultural Organization, 1987]. [CO3

2�] and [Ca2 +] are the concentrations of carbonate and calcium ions. Ca2+

concentrations are estimated as a function of salinity [Riley and Tongudai, 1967]. CO3
2� concentrations are

calculated from prognostic AT, total dissolved inorganic carbon CT, S, and temperature T according to the pro-
cedure detailed by Najjar and Orr [1998]. OA decreases carbonate concentrations and therefore Ω. Decreasing
Ω first impacts the TOPAZ2 parameterization for formation (and instantaneous export from the surface and
dissolution at depth) of surface calcite detritus JCalcForm. This formation rate is proportional (∝) to the degree
of calcite supersaturation (i.e., the degree to which the calcite saturation state ΩCalcite is> 1) and grazing on
small plankton (e.g., coccolithophores) JGrazSmall:

JCalcForm ∝ JGrazSmall �max 0; ΩCalcite � 1ð Þð Þ (4)

A similar relationship is used for aragonite detritus formation from grazing on large phytoplankton (e.g.,
grazing by pteropods):

JAragForm ∝ JGrazLarge �max 0; ΩAragonite � 1
� �� �

(5)

OA also impacts CaCO3 dissolution in TOPAZ2, which is assumed to occur at a rate JRemin proportional to the
degree of undersaturation:

JCalcRemin ∝max 0; 1�ΩCalcð Þð Þ (6)

JAragRemin ∝max 0; 1�ΩArag
� �� �

(7)

TOPAZ2 therefore assumes that there is no water column carbonate dissolution above the carbonate satura-
tion horizon. Finally, Ω affects the fraction of CaCO3 detritus reaching the ocean-sediment interface that is
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permanently buried. The fraction buried is
determined by a combination of Ω and
CaCO3, organic, and lithogenic flux after
Dunne et al. [2012b]. These are the three
feedbacks in TOPAZ2 most directly
related to the impact of OA on AT and
Alk* distributions.

The signal we are interested in detecting
is the net effect of OA feedbacks on the
AT distribution (Figure 3). Surface AT and
Alk* increases occur when less AT is
exported from the surface in the form of
CaCO3. At middepths (750–2500m), less
CaCO3 is dissolved due to the decreased
surface export, leading to slight net AT
and Alk* decreases. Finally, small AT
increases occur at great depth. The deep
increase primarily results from enhanced
CaCO3 dissolution in the water column
and a slowdown of deep ocean overturn-
ing. Ilyina and Zeebe [2012] showed that
changes from sedimentary interactions
become large over centuries to millennia,
though these changes remain small on
the decadal timescales we are concerned
with. Depth mean AT and Alk* changes in
Figure 3 are similar because freshwater
cycling intensification primarily redistri-
butes freshwater and alkalinity at the
surface and does not strongly affect the
mean surface value. However, the mean
AT increase is smaller at the surface than
at 100m depth, while the reverse is true
for Alk*. This is because freshwater
content is increasing at the surface and
decreasing from 100 to 1000m depth,
likely due to decreased freshwater incor-
poration into mode and intermediate
waters. Mean surface nutrient concentra-

tion decreases have a very small impact on mean surface AT, peaking in 2100 with AT increases
of ~0.5 μmol kg�1.

2.2. Signal, Noise, and Trend Detection

Trend detection involves distinguishing the target signal (a secular trend) from noise. Our signal is the influ-
ence of the secular trend in OA on AT and the noise is both measurement uncertainty and natural variability
on timescales longer than the approximately month-long repeat hydrographic cruises. We estimate both the
signal and the noise from Earth system model simulations. Researchers have used coupled models to esti-
mate noise for studies of the detectability of other Earth System trends. For example, Deser et al. [2014]
and Keller et al. [2014] both considered trend emergence from noisy signals, but Keller et al. [2014] chose a
definition of noise that was focused on interannual variations, whereas Deser et al. [2014] defined noise using
the standard deviations of decadal trends from their large initial condition ensemble suite of runs. Our
definition of noise is closer to that of Keller et al. [2014], given that, for our problem, seasonal and interannual
variabilities have a large influence on the AT distribution (discussed in section 3.3), but a small influence on

Figure 3. A Hovmӧller diagram showing global ensemble mean surface
to depth (a) AT and (b) Alk* anomalies (relative to the mean concentra-
tions from 1950 to 1959) minus control anomalies against time in the
simulation one-ensemble mean. Inset plots show the surface anomalies
for the same time span, and narrow blue-grey windows around the lines
on the inset plots indicate ensemble member standard deviations. The
fact that these windows are barely visible highlights the high signal-to-
noise ratio for globally integrated changes versus depth.
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the pH changes driving OA-related AT redistribution (when compared to anthropogenic CO2 uptake) [Rodgers
et al., 2015]. The effects of OA on the AT distribution will therefore be more consistent between possible
future states of the Earth system than the effects of other non-OA sources of interannual variability on AT,
and seasonal and interannual variabilities therefore are not noise in our signal of interest.

We define the target signal by fitting a second-order polynomial to Setup 1 ensemble mean AT and Alk* from
1990 to 2050 in each grid cell using the number of years since 1990 (y) as our independent variable:

AT yð Þ ¼ Ay2 þ By þ C (8)

We use a second-order polynomial to allow for an accelerating or decelerating signal but note that all of our
conclusions apply equally well when the analysis is done using linear fits over variable windows of time. We
permit the added complexity of the second-order polynomials relative to linear fits because the linear fits
change depending on the window of time considered, suggesting that the simpler model is inadequate to
capture the response. We then use these polynomials to estimate the magnitude of the signal, or the ensem-
ble mean property distribution changes (Δ’s) over the years following 1990, by subtracting AT(0), which
results in the following:

Δ1990þy ¼ Ay2 þ By (9)

Subscripts and superscripts for Δ estimates (e.g. ΔAlk*
2030 ) indicate the calendar year and the property the

estimate refers to, respectively. We also estimate polynomials in this manner for S and N, so we may later
discuss changes in these properties (ΔS and ΔN) as they relate to changes in the AT and Alk* distributions.

We estimate internal variability component of noise (VInternal, with units of μmolAT kg
�1) in two steps. First,

we determine the standard deviation of annual mean AT and Alk* between Setup 1 ensemble members
for each of the years between 1990 and 2030 for each model grid cell. We then average these 40 standard
deviation sets.

We estimate the seasonal variability component of noise (VSeasonal, with units of μmolAT kg
�1) as the stan-

dard deviation of the detrended monthly model outputs from the Setup 2-control simulation. We estimate
VSeasonal separately for each year in the 10 year period from 1960 to 1970 to avoid including interannual varia-
bility (i.e., internal variability) in this estimate. We then average the 10 estimates for our combined seasonal
variability estimate. We limit this analysis to a 10 year period due to computational constraints associated
with monthly data.

We use 5μmol kg�1 as our estimate for the measurement uncertainty component of noise (UMeasurement).
This estimate is for the most highly quality controlled alkalinity measurements currently attainable. This
uncertainty was estimated as 6μmol kg�1 for the PACIFICA data set by Suzuki et al. [2013] and 3.3μmol kg�1

for the CARINA data set by Velo et al. [2009].

We do not separately estimate mesoscale variability or daily variations because averaging changes along
hydrographic sections measured across months and many mesoscale variability length scales implicitly
diminishes the influences of these kinds of variability.

We define the overall noise by combining VInternal, VSeasonal, and UMeasurement added in quadrature. We refer
to this combination of the variability and uncertainty terms as the noise “THRESHOLD,” since changes must
be greater than this value to be detected:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UMeasurement

2 þ VSeasonal
2 þ V Interannual

2
q

≡ THRESHOLD (10)

Equation (9) and our change detection criteria suggest a change is first detectable when:

Ay
2 þ By

�� �� > THRESHOLD (11)

We are able to solve this equation for y when the response equals the THRESHOLD using the quadratic
formula for each model grid cell, though we must solve it also with a negative THRESHOLD to allow for
possible property decreases. Our “year of earliest detection” (YED) estimate is then anytime after the smallest
positive real solution for y added to the year 1990.
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YED estimates presume that the region was measured in 1990 using Certified Reference Materials and dec-
adally since. They should be lengthened accordingly for regions where there were not World Ocean
Circulation Experiment [WOCE International Project Office, 2003] quality measurements in the early 1990s.
Also, it should be noted that the first batches of reference materials were certified for AT retroactively, so
1990 may be too early of a reference year. Because our YED estimates are similar when assuming a linear
response, our YED estimates can be adjusted for regions where high-quality measurements were first made
after 1990 by simply adding the length of time between 1990 and when the region was first measured.

2.3. Validating THRESHOLD Estimates

We compare our THRESHOLD estimates derived frommodel variability to a data-based THRESHOLD estimate
from measurements at A Long-term Oligotrophic Habitat Assessment (station AHOLA) and the Bermuda
Atlantic Time-series Study (BATS). VInterannual is re-estimated for this analysis for the period over which mea-
surements have beenmade at these stations. The BATS and ALOHA time series contain over 300 vertical AT, S,
and N profiles each measured since 1988 and 1993, respectively [Joyce and Robbins, 1996; Karl and Lukas,
1996]. These profiles are subject to all three sources of variability and uncertainty that contribute to
THRESHOLD as well as variability on longer and shorter time and space scales (see section 2.2), allowing us
to estimate THRESHOLD directly from data. We do not use these estimates for our main analysis because they
are only two representations of the possible outcomes of the combinedmodes of variability and therefore do
not provide robust statistics. Nevertheless, we can compare the data based estimates to our model-based
THRESHOLDs to determine whether the two estimates are indeed of similar magnitude.

For each profile at ALOHA and BATS, we interpolate the property measurements onto the 50 model
depth surfaces using a cubic Hermite piecewise polynomial interpolation. Key et al. [2004] showed that large
(4–15μmol kg�1) errors could be introduced by such an interpolation. To reduce the potential for this error,
we eliminate any interpolations between data points that are more than (25 + z/15)m depth apart, where z is
the depth of the interpolated value. This requirement prevents us from making comparisons at BATS below
195m depth. Our data-based THRESHOLD estimate is then the standard deviation of measurements at each
interpolated depth level, which we compare to our model-derived THRESHOLD.

3. Results and Discussion

We first discuss how well our data-based and model-based THRESHOLD estimates agree at ocean stations
ALOHA and BATS in section 3.1. We then present and discuss Δ estimates in section 3.2 and the VSeasonal
and VInternal THRESHOLD components in section 3.3. YED estimates are presented and discussed in
section 3.4.

3.1. THRESHOLD Comparisons

We compare our data-based THRESHOLD estimates at ocean station ALOHA and BATS to the average
THRESHOLD estimates from model variability within the 20° latitude and longitude window around each
station at each depth (Figure 4). Our findings are not strongly sensitive to the size of this window. Model-
based THRESHOLD estimates (black line) are of similar magnitude to the data-based THRESHOLD estimates
(red dots) and loosely capture the variability with depth. Average data-based AT THRESHOLD values
exceed model-based THRESHOLD values near 250m depth at ALOHA (Figure 4a), while the reverse is true
at BATS (Figure 4b). AT THRESHOLD values from BATS are similar to the modeled seasonal variability (blue
line) but lower than the internal variability estimates (green line). This could either be because the modeled
internal variability is higher than the true internal variability at BATS, or simply because there was less internal
variability over the measurement period at BATS than is typical. By contrast, Alk* model and data-based
THRESHOLD estimates agree well at the surface at both stations suggesting the discrepancy in the modeled
and experienced AT variabilities is primarily the result of variability in evaporation and precipitation. At depth,
model-based THRESHOLD estimates are larger than data-based estimates for both AT and Alk*. We attribute
this to the consistency of the equipment, methods, and quality control procedures used at ALOHA and note
that our 5μmol kg�1 measurement uncertainty estimate applies to collections of measurements made by dif-
ferent labs with different equipment. In summary, this comparison suggests that our model-based
THRESHOLD estimates are of appropriate magnitude. However, the comparison also serves to caution that
Earth System internal variability is statistically defined and that much larger or smaller changes are possible
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within a given decadal window. Therefore, observed property changes should be both widespread and
persistent before they can be attributed to long-term changes with confidence.

3.2. Trend Estimates

We first consider AT change from model year 1870 to 1910 in the Setup 2 experiment (Figure 5). Observed AT
changes in Setup 2 are attributable to biogeochemical impacts because freshwater cycling and ocean circu-
lation are held constant between the control and experimental simulations. We showed earlier (Figure 3) how

Figure 4. A comparison of model-based (black line) and data-based (red dots) THRESHOLD estimates against depth
at ocean station (a, c) ALOHA and (b, d) BATS for (Figures 4a and 4b) AT and (Figures 4c and 4d) Alk*. The VSeasonal
(blue line) and VInternal (green line) contributions to THRESHOLD (see equation (10)) are plotted for reference.
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the Alk* distribution response to OA
and climate changes varies with depth,
and in Figure 5 we see the OA response
also varies regionally as well. In the well-
lit supersaturated (Ω> 1) surface ocean,
AT accumulates with OA due to decreased
CaCO3 surface export. This is reflected in
nearly universal positive surface and
near-surface AT changes (Figures 5a and
5b). OA-related surface AT increases are
smallest in the equatorial and Southern
Ocean upwelling regions where seawater
is more recently upwelled on average
and has had less time to be affected by
decreased CaCO3 export. Patterns at
depth (447+m; Figures 5c–5e) reflect a
balance between competing OA influ-
ences. Net AT gains occur in comparatively
well-ventilated regions (e.g., the subtropi-
cal gyre thermoclines and the subthermo-
cline North Atlantic). Very small net AT
losses are found in deeper naturally corro-
sive waters that experience diminished
CaCO3 fluxes from the surface, but these
changes are small enough as to appear
white in our figures.

The patterns of modeled AT changes
we observe in our Setup 1 ensemble mean
(Figure 6) are qualitatively similar to the AT
changes recently found by Ilyina [2015]
using a version of the HAMOCC model that
allows for hydrological cycle changes and
is forced with historical and RCP8.5 CO2

concentration pathways. AT changes can
be understood primarily as the combined
effects of AT redistribution from OA and
intensification of the hydrological cycle.
Ocean circulation and organic matter
cycling changes have smaller influences.

In the remainder of this section we consider the impact of each of these changes separately to account
for ΔAT values.

Alk* is formulated to be sensitive to ocean circulation and CaCO3 cycling but not to freshwater or organic

matter cycling. The broad similarity between ΔAlk*
2030 values (Figure 6) and OA-related AT changes (Figure 5)

suggests that OA-related changes in CaCO3 cycling are indeed the dominant factor responsible for Alk*

changes. The ΔAlk*
2030 values being slightly smaller than Setup 2 AT changes despite the similar elapsed

lengths of time is consistent with the faster atmospheric pCO2 growth in the Setup 2 simulation.

Similarities between ΔAlk*
2030 and ΔAT

2030 values suggest that OA impacts can explain some of the AT change.
However, there are significant discrepancies between these distributions regionally that OA cannot
account for.

Freshwater cycling changes are also significant for changes in AT. Their influence can be estimated from

salinity changes (ΔS
2030 in Figure 7). Freshwater dilutes both AT and S linearly, so the influence of freshwater

Figure 5. Maps of (a–e) AT changes between model years 1870 and
1910 of the simulated 1% per year pCO2 growth Setup 2 experiment
(see Figure 1) at the five depth surfaces indicated on the left.
Simulated AT was adjusted by subtracting AT in a control simulation
with fixed atmospheric pCO2 of 286 ppmv and identical circulation
and freshwater cycling to the pCO2 growth simulation. These changes
therefore reflect only the influence of OA on the AT distribution.
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cycle changes on AT can be approximated as the ratio of mean surface seawater AT to S (~66.4 μmol kg�1

frommeasurements [Carter et al., 2014] and ~66.2 in ESM2M) times the salinity change. The color scale for S
changes in Figure 7 is set so the approximate AT change expected to result from the S change shown
equals the AT change of the same color in Figure 6. This color scale obscures some of the largest changes,
and 40 year salinity decreases of more than 1 are widespread across the Arctic and large increases are
found at the boundary between the Subtropical Atlantic and the Southern Ocean. Freshwater cycling
changes have a substantial impact on AT changes. The largest changes in surface AT are found in the rapidly
freshening Arctic, Western Equatorial Pacific, and Southern Ocean, and the increasingly evaporative
Atlantic and Indian Ocean. To a first approximation, AT changes (Figure 6) can be seen to be the combina-
tion of Alk* changes (Figure 6) and S changes (Figure 7). This suggests that OA feedbacks and freshwater

cycling changes collectively account for the majority of the ΔAT
2030 values.

AT changes from changes in organic matter cycling are comparatively small. AT changes in a�1:1 ratio with N
in the TOPAZ2 biogeochemical model, so we expect the effect of changes in organic matter cycling on
modeled AT trends to equal the N changes. Figure 7 indicates that changes in N are generally less than
20% of the total AT change.

N changes, like Alk* changes, can provide an indicator of ocean circulation or biogeochemical production
changes. For example, bands of Alk* (and N) decreases near the Atlantic and Indian segments of the
Southern Ocean Subtropical Front (Figures 6b, 6d, 7b, and 7d) that are not seen with fixed circulation
(Figures 5a and 5b) are consistent with expansion of the low-Alk*, low-N, high-S subtropical gyres. Slowdown

Figure 6. Maps of (a, c, e, g, and i) AT and (b, d, f, h, and j) Alk* changes from 1990 to 2030 (ΔAT
2030 andΔ

Alk*
2030) in the Setup 1

ensemble mean at the five depth surfaces indicated on the left. We only plot Δ2030 values but note the distributions
for other end dates are qualitatively similar. However, rates of change from 1990 to 2030 are generally larger
than from 1990 to 2010 and smaller than from 1990 to 2050. Black contours encircle areas where values exceed
colormap limits.
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of the Atlantic Meridional Overturning Circulation can be seen in large increases in deep North Atlantic N and
Alk* (Figures 6j and 7j) that are absent in fixed-circulation simulation Alk* changes (Figure 5e). Increasing Alk*
and N are also both seen at 447m depth (Figures 6 and 7) north of the Subtropical Mode Water (STMW)
formation region in the Southern Pacific while similar large AT increases are not seen with fixed circulation
(Figure 5b). These changes are likely due to shifts in circulation, though whether to stagnation of the water
mass at depth or increased contributions of upwelled high-Alk* high-N Upper Circumpolar Deep Water to
STMWwith increasing westerly wind strengths over the Southern Ocean is unclear. Nevertheless, the effects of
circulation changes tend to be small or localized, and we expect them to be aminor cause for AT changes com-
pared to freshwater cycling and OA-related CaCO3 changes outside of the mentioned regions.

3.3. Internal and Seasonal Variability

AT internal variability (Figure 8) is large in the surface of the subtropical gyres, tropics, and Arctic. Internal
variability is especially intense in the Western Pacific because of ENSO-related precipitation variability.
ENSO-related internal variability is slightly overestimated by the ESM2M model we use [Dunne et al.,
2012a], so it is possible that this variability is an overestimate for some regions. Internal AT variability
decreases with increasing depth and is mostly smaller than our 5μmol kg�1 measurement uncertainty esti-
mate by 447m depth. Surface internal variability in Alk* is substantially smaller than in AT because the salinity
normalization removes the effects of variability in evaporation and precipitation. The only places where Alk*
internal variability is larger than our measurement uncertainty estimate are the Kuroshio Extension (where
the boundary between the subpolar and subtropical gyres is highly variable) and the Arctic and the Bay of
Bengal (where modeled riverine alkalinity inputs scale with variable land rainfall).

Seasonal AT variability (Figures 9a, 9c, 9e, 9g, and 9i) is of comparable magnitude to internal variability for
both properties. Seasonal variability is largest regionally in the highest and lowest latitudes due to large

Figure 7. Maps of (a, c, e, g, and i) salinity (S) and (b, d, f, h, and j) nitrate (N) changes from 1990 to 2030 (ΔS
2030 andΔ

N
2030) in

the Setup 1 ensemble mean at the depth surfaces indicated on the left. Contours encircle areas where values exceed
colormap limits.
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seasonal cycles in precipitation at these latitudes. The high latitudes also have large seasonal AT cycles from
sea ice formation and melting, as well as from riverine input variability in the Arctic. Seasonal Alk* variability
(Figures 9b, 9d, 9f, 9h, and 9j) is generally lower than seasonal AT variability. The largest seasonal Alk* varia-
bility is found at the surface in river plumes. This can be seen as high seasonal variability where the Ganges
and Brahmaputra flow into the Bay of Bengal, at the mouths of the Congo and the Amazon Rivers, and
broadly in the Arctic where numerous rivers empty (Figure 9). While Alk* is unaffected by freshwater cycling,
river water can contain substantial AT from dissolved minerals [Cai et al., 2008] that does affect Alk* [Carter
et al., 2014].

Seasonal and interannual variabilities are significant considerations when searching for trends in decadal
measurements. Both sources are in some places more than double the 9.8μmol kg�1 variability threshold
estimate applied globally by Ilyina et al. [2009]. They are a problem for such data-based estimates of
THRESHOLD because they would require a long time series simply to accurately estimate the variability.
Fortunately, Alk* removes the majority of seasonal and interannual variability by limiting the effects of varia-
bility in freshwater cycling.

3.4. Year of Earliest Trend Detections

YED estimates are the earliest years in which the AT and Alk* changes exceed our THRESHOLD estimates and
become “trends,” though we again caution that what we call a trend is better thought of as a detectable
change of low statistical significance. YEDmaps (Figure 10) suggest AT and Alk* trends may already be detect-
able in some places. The earliest surface YED estimates are in the Arctic and Atlantic for AT, though the Arctic
YED values are underestimates given the lack of widespread 1990s measurements there. Surface Alk* YED
estimates are earliest in the subtropical gyres. The subtropical gyres are likely where these changes are first
detectable despite having low carbonate mineral export because these regions are exchanging water with

Figure 8. Maps of ensemble-based estimates of internal variability in (a, c, e, g, and i) AT and (b, d, f, h, and j) Alk* for the
depth surfaces indicated on the left for the years 1990 to 2050.
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the more seasonally and interannually variable high- and low-latitude regions. The subtropics therefore
experience comparable changes against a background of lower variability. Our simulations therefore suggest
that a linear decline of calcification in response to saturation state changes with OA could be broadly detect-
able by 2030 across the surface of all subtropical gyres. However, Ilyina et al. [2009] show that the OA
response is highly dependent on the assumed response of carbonate producing ecological communities
to decreases in ocean Ω. While the model algorithms have some mechanistic justification, there is consider-
able variability in the carbonate production contribution to total biodiversity and its response to OA between
models. The actual response is as yet poorly understood and highly uncertain, and so too is our estimate
of 2030.

A clear caution for interpreting decadal measurement trends from Figure 10 is that some of the significant
simulated AT trends are unrelated to OA. This can be seen in the early (2010–2020) YED estimates across
the Arctic and Atlantic for AT (Figure 10a), which patterns of salinity change (Figure 7a) suggest are due rather
to changes in patterns of evaporation, precipitation, and ice melt. Furthermore, OA-related AT trends may be
counteracted or obscured by evaporation and precipitation. An example of a AT trend being obscured is the
>2050 YED estimates across the North Pacific where there are <2030 YED estimates for Alk*. Using Alk* can
eliminate this variability, allow a detected trend to be more confidently attributed to OA, and allow a trend to
be detected earlier in some places. However, both AT and Alk* can be redistributed by circulation changes.
The YED estimates before 2020 below the surface are in many places partially the results of circulation
changes—either directly through displacement of seawater by other seawater with a differing AT and Alk*
or indirectly through changes in modeled carbonate cycling patterns with nutrient redistributions—rather
than OA. To support this claim, consider how the bands of early (2010–2020) Alk* YED estimates off the
Californian Coast at 145m depth, in the Southern Pacific Subtropical Gyre at 447m depth, and in the deep

Figure 9. Maps of seasonal variability estimates (a, c, e, g, and i) AT and (b, d, f, h, and j) Alk* for the depth surfaces indicated
on the left in μmol kg�1.
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North Atlantic at 4231m depth all coincide with positive N trends (Figure 7) and discrepancies between AT

changes under fixed circulation (Figure 5) and ΔAlk*
2030 (Figure 6).

We can now answer a question we posed in section 1 regarding whether the intermediate or deep oceans are
where we would expect the earliest detection of OA-related AT trends, and the answer is no. Trends do
become detectable at depths below 145m, but in increasingly narrow regions at greater depth. Where
Alk* trends are detectable, the trends appear to be the result of circulation changes rather than OA. The
OA portion of the signal is generally detectable at a later date at greater depth due to smaller Δ values
at depth. Compensating decreases in THRESHOLD are limited by a constant measurement uncertainty
with depth.

How do our findings compare to Ilyina et al. [2009]’s? In their linear response simulation—the most compar-
able simulation to our own—Ilyina et al. [2009] find that AT trends could be detectable by ~2010 in the Pacific
Ocean, but not until 2040 in the Atlantic due to their smaller simulated preindustrial CaCO3 production, and
therefore, smaller OA-related AT changes, in the Atlantic than in the Pacific. By contrast, we find that AT trends
would be detectable on this decade in large swaths of the Atlantic but not detectable until after 2050 in most
of the Pacific because of complimentary and counteracting freshwater cycling-related AT changes in the
Atlantic and Pacific, respectively. Considering only the OA-related portion of the trend with Alk* trends, we
still do not find that trends would be detected earlier in the Pacific than in other basins because, unlike their
model, our model does not have larger initial CaCO3 production (Figure 11) or a larger OA response in the
Pacific than in the Atlantic (Figure 3). Slightly smaller seasonal and internal variability in the Atlantic and
the Pacific is a secondary factor. The TOPAZ2 package simulates more CaCO3 production along coasts, across
the North Atlantic, and along the subtropical front of the Southern Ocean than the model used by the Ilyina
study. Ilyina et al. [2009]’s model simulates substantially more CaCO3 production in the equatorial Pacific. This
discrepancy between our findings suggests that the baseline calcification patterns in the simulated preindus-
trial ocean are also important for regional detectability of OA trends. It should be noted that the RCP8.5

Figure 10. Maps of the year of earliest detection (YED) based on equation (11) for (a, c, e, g, and i) AT and (b, d, f, h, and j) Alk*.
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concentration pathway we use presumes
greater emissions than the IS92a scenario
used by Ilyina et al. [2009], with RCP8.5
emissions growing relative to IS92a from
equal in the first years of this century to
being ~50% greater in 2050 (see Figure 1
for a concentration pathway produced
with IS92a). We therefore expect a greater
OA response for a given ecological OA
sensitivity in our simulations. However,
atmospheric pCO2 levels for the two sce-
narios are within 5 ppmv of one another
from 1990 to 2015, so the earliest YED
values should be comparable if this were
the only difference.

4. Summary

We revisit the question first posed by Ilyina
et al. [2009] of how long it will take before
changes in the AT distribution resulting
from biogeochemical feedbacks with OA

would be detectable. We use a comprehensive Earth System Model to simulate the AT distribution response
to climate changes that their simulations omitted―most notably freshwater and organic matter cycling and
circulation changes―as well as to OA. We use a novel 30 member model ensemble to determine interannual
variability as an additional complication for detecting trends from decadal data. We also extend the analysis
to depth. We show the following:

1. Changes in freshwater cycling drive large changes in the AT distribution that complicate interpretation of
OA, posing a challenge to detecting the biogeochemical imprint of OA from AT. These changes are so
strong that they may already be detectable from repeat hydrographic AT records.

2. There is yet considerable utility for decadal measurement for OA biogeochemical trend detection despite
this complication: We argue that Alk* trends are unaffected by freshwater cycling trends, so detected Alk*
trends can be confidently assigned to OA provided circulation changes can be ruled out.

3. Surface AT has substantial interannual and seasonal variability―up to several times measurement uncer-
tainty―complicating AT trend detection.

4. Alk* has less seasonal and interannual variabilities allowing trends to be separated from variability and
measurement uncertainty earlier than trends in AT in some regions.

5. Our modeled Alk* trends from OA would be broadly detectable across the subtropical gyres of the Indian,
Pacific, and Atlantic by 2030 and in limited regions by 2020.

6. Estimates of when a trend could be detected appear sensitive to the simulated preindustrial distribution
of CaCO3 production.

7. OA-related trends would be detectable later at depth. This is because trendmagnitudes (signal) and varia-
bility (noise) both decrease with depth, while measurement uncertainties (noise) remain constant.
Furthermore, trends that are found at depth are more likely to be the result of shifts in ocean circulation
rather than OA.

We caution here and elsewhere that our estimates for when a trend might be detectable presume an ecolo-
gical response to OA that is yet poorly constrained, and are dependent on when high-quality AT measure-
ments first became available in a region. There are therefore large uncertainties on these estimates that
are well documented and better constrained by the sensitivity analyses done by Ilyina et al. [2009], which
showed that trends would become detectable 40+ years earlier or later with different ecological responses.
Regardless of the exact ecological response, however, considering Alk* or salinity-normalized AT changes will
simplify interpretation and aid in detection of trends. Our analysis is consistent with and complementary to
the Ilyina analysis in adding the six results noted above to the broader discussion.

Figure 11. Map of preindustrial (model years 1860 to 1880 mean)
CaCO3 production in ESM2M with TOPAZ2. Contours are provided at
intervals labeled on the color scale. The color scale for this figure
is intended to be comparable to Figure 9a in Ilyina et al. [2009].
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