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The Fifth Assessment Report of the Intergovernmental Panel on Climate Change highlights that climate change and ocean acidification are chal-
lenging the sustainable management of living marine resources (LMRs). Formal and systematic treatment of uncertainty in existing LMR projec-
tions, however, is lacking. We synthesize knowledge of how to address different sources of uncertainty by drawing from climate model
intercomparison efforts. We suggest an ensemble of available models and projections, informed by observations, as a starting point to quantify
uncertainties. Such an ensemble must be paired with analysis of the dominant uncertainties over different spatial scales, time horizons, and
metrics. We use two examples: (i) global and regional projections of Sea Surface Temperature and (ii) projection of changes in potential catch
of sablefish (Anoplopoma fimbria) in the 21st century, to illustrate this ensemble model approach to explore different types of uncertainties.
Further effort should prioritize understanding dominant, undersampled dimensions of uncertainty, as well as the strategic collection of observa-
tions to quantify, and ultimately reduce, uncertainties. Our proposed framework will improve our understanding of future changes in LMR and the
resulting risk of impacts to ecosystems and the societies under changing ocean conditions.

Keywords: climate change, fisheries, marine resources, multi-model ensembles, projection, uncertainty.

Living marine resources projections under
climate change
The Fifth Assessment Report of the Intergovernmental Panel on
Climate Change (IPCC AR5) highlights that changes in ocean tem-
perature, oxygen, carbonate system, and other ocean properties are
contributing to the challenges of sustainable ocean management
(Field et al., 2014). The importance of a comprehensive assessment
of the impact of climate change on the ocean is highlighted by two

new ocean-specific chapters within the IPCC AR5 Working Group
II (WGII) on impacts, adaptation, and vulnerability (Field et al.,
2014). In relation to living marine resources (LMRs), the IPCC
Report concludes with medium to high confidence that marine
species have been shifting their ranges, seasonal activities and periodi-
cities, migration patterns, abundances, and inter-/intra-specific
interactions that result in changes in trophodynamics in response
to changing ocean conditions (Pörtner et al., 2014). These changes
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are projected to lead to altered patterns of ocean productivity, bio-
diversity, and fisheries catch potential in the 21st century (Kirby
and Beaugrand, 2009).

One of the advances in assessing the impacts of climate change on
LMR in the IPCC AR5 WGII over previous assessment reports is the
wider availability and use of ecosystem model projections. These
quantitative model projections include shifts in net primary prod-
uctivity, the distribution of exploited populations and changes in
potential fisheries production and ecosystem structure at local
and global scales (Pörtner et al., 2014). Projections have been gener-
ated from modelling approaches that range from global coupled
atmosphere-ocean-biogeochemistry earth system models (e.g. Bopp
et al., 2013), to species distribution models (e.g. Cheung et al., 2009),
single-species population dynamic models (e.g. Lehodey et al., 2010),
and whole ecosystem models (e.g. Ainsworth et al., 2011; Griffith
et al., 2011). The scope, objectives, assumptions, scales (spatial and
temporal), and degree of validation with empirical data vary widely
across these models, and approaches range from highly empirical to
highly mechanistic (Barange et al., 2010; Fulton, 2010; Plagányi et al.,
2011; Stock et al., 2011).

Statements of confidence concerning the impacts of climate
change on LMRs within the IPCC AR5 WGII report were based
on a qualitative assessment of observational evidence and individu-
ally published projections encompassing the diversity of LMR
models described above. While this is a necessary starting point,
more quantitative confidence estimates for projections can increase
their utility for policy formulation and evaluation. There is therefore
a need for a quantitative framework for systematically exploring un-
certainties in LMR projections. Such a framework would also help
identify where investment in further theoretical development, ob-
servational measurements, and model development are needed, ul-
timately improving the reliability of climate-LMR projections
(Cheung et al., 2013a; Brander, 2015). Systematic exploration of un-
certainties have been undertaken for climate and oceanographic
projections (e.g. the Atmospheric Model Intercomparison Project
(Gates, 1992) and the Coupled Model Intercomparison Project
(Meehl et al., 2000; Taylor et al., 2011) and for impact assessments
of selected sectors (e.g. Agricultural Model Intercomparison and
Improvement Project; Rosenzweig et al., 2013). Exploration of un-
certainties is also an important component in traditional fisheries
resource assessment, while the increasing demand for ecosystem-
based fisheries management raises additional challenges to system-
atically understanding projection uncertainties (e.g. Hill et al., 2007;
Link et al., 2012). More recently, initiatives on comparing fisheries
models (e.g. Fisheries Model Intercomparison Project, ICES-PICES
Strategic Initiative on Climate Change Impacts on Marine Ecosystems)
have also been started.

While challenges in quantifying uncertainty in climate-LMR
projections for global change assessment parallel those considered
in modelling other complex natural systems such as climate,
there are additional sets of complexity that are specific to LMRs.
Climate-LMR projections require linking physical, biological and
human sub-systems across different temporal and spatial scales.
Such inter-linkages lead to additional uncertainties that originate
in particular systems or scales (Planque, 2015). In addition, the be-
haviour of some components of LMR systems is difficult to predict,
such as the responses of fishing activities to changes in climate and
fisheries resources. Moreover, many LMR models require large
number of input parameters relative to the available observational
data that are available to calibrate and validate the model outputs.
Techniques for assessing model uncertainties that are commonly

applied to conventional fisheries assessment (e.g. Bayesian estimates
of process and observation errors) are thus difficult to apply to
climate-LMR projections.

This paper aims to synthesize our knowledge of the uncertainties
of LMR projections under climate change and propose a framework
to systematically assess such uncertainty. Our paper complements
that of Payne et al. (this volume), which reviews existing approaches
in addressing uncertainties in LMR. Here, we focus on the following:
first, we characterize different types of uncertainty in climate and
LMR projections, highlighting the challenges of the large uncer-
tainty space; second, drawing from the experience of physical
climate model intercomparisons, we explore how multi-model
comparison and ensemble frameworks can be used to systematically
identify and quantify uncertainties in LMR projections. Through an
example, we highlight the relative roles of uncertainty linked to
climate variability, climate model uncertainty, and future emissions
scenarios as a function of time horizon and spatial scale. This is
followed by a discussion of the role of observations in refining
uncertainty estimates. Finally, we discuss how outcomes from this
model-assessment framework can be used to evaluate the risk of
climate change to LMRs and inform the design of management
and conservation measures to reduce such risk.

Sources of uncertainty
Climate-LMR models that estimate the impacts of climate change
generally have three model components that are linked to describe
the responses of marine resources, fisheries, and human society
to climate systems. These components generally include an atmos-
phere-ocean-biogeochemical and lower-trophic level models, a fish
or upper-trophic level model (Holt et al., 2014), and a model for the
extraction and availability of ecosystem services from marine eco-
systems (see Fulton, 2010; Plagányi et al., 2011; Stock et al., 2011).
The three components are either related “off-line”, where each
model component is run separately with the outputs from one
component used as inputs for another (Cheung et al., 2011;
Blanchard et al., 2012; Christensen et al., 2015), or dynamically
(i.e. “on-line”) with the models incorporating fully interactive pro-
cesses and, in some cases, feedbacks among the three components
(Fulton, 2010; Lefort et al., 2015).

Research on physical climate projections, biodiversity, and eco-
logical modelling has recognized many topologies of uncertainties
(Regan et al., 2002; Link et al., 2012). Modelling of physical and bio-
geochemical properties of atmospheric and ocean systems in climate
change assessments have commonly categorized uncertainties, for
any time horizon and spatial scale, into three components: (i) in-
ternal variability, (ii) model uncertainty, and (iii) scenario uncer-
tainty (Table 1) (Hawkins and Sutton, 2009). In our discussion of
the uncertainties associated with climate-LMR projections, we
adopt this terminology to leverage the knowledge and experience
of the climate modelling communities.

Internal variability is caused by natural physical and ecological
processes that are intrinsic to climate and ecological systems. It
arises in both temporal and spatial dimensions, even in the absence
of any external (e.g. anthropogenic) perturbations, and includes
phenomena such as the El Niño-Southern Oscillation (ENSO),
the North Atlantic Oscillation (NAO), the Atlantic Multidecadal
Oscillation (AMO), variations in gyre boundaries not correlated
with major climate models, and predator–prey cycles, etc. (Day,
1982). Century-scale climate change projections developed in associ-
ation with the IPCC realistically resolve many modes of internal
climate variability, but these simulations are not designed to simulate

Page 2 of 14 W. W. L. Cheung et al.

 at E
T

H
 Z

Ã
¼

rich on January 15, 2016
http://icesjm

s.oxfordjournals.org/
D

ow
nloaded from

 

http://icesjms.oxfordjournals.org/


a specific observed event or predict a future event, and will not capture
all aspects of spatial and temporal scales of these modes (Guilyardi
et al., 2009). For ecological systems, natural fluctuations that are
driven by environmental variability and dynamics of ecological inter-
actions are often difficult to predict (Beckage et al., 2011; Deser et al.,
2012), causing systematic or seemingly random variations in eco-
logical states that may persist for a decade or more (Deser, 2012;
Stocker et al., 2014). Different initial conditions of the climate or
LMR models, representing different realizations of the climatic and
ecological systems, will generate different patterns of internal variabil-
ity. Thus, one method to explore internal variability is to analyse
simulation results generated from ensemble members of climate
and ecological models that have different initial conditions.

Model uncertainty is made up of two sub-categories: parameter
and structural uncertainty (Tebaldi and Knutti, 2007). Parameter
uncertainty relates to the specific parameter values used in the
formulae that influence the behaviour of a model (Tebaldi and
Knutti, 2007; Knutti et al., 2010). For parameters that are estimated
from observations, parameter uncertainty stems from our limited
ability to precisely measure or estimate specific physical or ecologic-
al processes and quantities (Link et al., 2012), as well as from the
inherent variability in certain processes (e.g. growth rates that
vary across individuals) that are not resolved within the models.

Structural uncertainty relates to the spatial, temporal, and
mathematical resolution employed by a model and the types of
processes that are represented. Structural uncertainty includes the
function forms of equations used to describe mechanistic processes
and the types of interactions assumed to influence climate-LMR
processes. Such uncertainties cannot be explored via parameter
perturbations. For example, explicit trophic relationships that are
not described by size-structured interactions are not represented
in size-based trophodynamic models (e.g. Blanchard et al., 2012;
Watson et al., 2014), while such relationships may be included in
functional group type foodweb models (e.g. Christensen and
Walters, 2004).

Scenario uncertainty relates to the many possible futures com-
prising different socio-economic policies and technological devel-
opments likely occurring over the course of a model projection
(e.g. Moss et al., 2010; Nakicenovic et al., 2014). Climate-LMR
model drivers include the spatial and temporal changes in green-
house gas and aerosol concentrations, fishing effort, and other
human social-economic activities. Scenario uncertainty is not com-
pletely independent of internal variability in the climate-LMR
system, as future decisions on the utilization and conservation of
resources are sensitive to natural variation in the availability and dis-
tribution of LMR (e.g. the fishing quota decided on for the next
management cycle are dependent on the productivity and abun-
dance of the resources, as well as on how neighbouring countries
or regions are managing their resources).

The full range of possible future states for a given LMR reflects
contributions from all the sources of uncertainty outlined above,
with potential cascades of uncertainties interacting and accumulat-
ing over components of the climate-LMR models (Figure 1). For any
particular scenario, LMR models that differ in their structure and
parameter values will simulate a range of future changes in ocean
biogeochemistry, fish and fisheries. Additionally, an individual
model with a fixed set of parameters will display variability in pro-
jections as a result of the internal variability associated with natural
fluctuations of the climatic or ecological systems. Uncertainties that
originate in different climate-LMR model sub-components may be
additive or multiplicative. Thus, the final scope of uncertainties ofTa
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LMR projections is expected to be different from the uncertainty
scope of each model sub-component.

The width of the envelope of uncertainty depends on the nature
of interactions between linked models; the types of interactions
include linearity of the linkages, existence of threshold responses,
and positive/negative feedbacks (Peters and Herrick, 2004). When
the processes linking two or more models are non-linear, uncertain-
ties may be dampened or magnified through model linkages, for
example, through attenuation or amplification of changes in
higher trophic level production in marine ecosystems driven by
climate change (Chust et al., 2014; Stock et al., 2014a). Feedbacks
in social-ecological systems can be positive or negative, and uncer-
tainties propagated in models that are linked dynamically with feed-
backs resulting in emergent dynamics are difficult to predict.

Here, we draw experience from the large body of research on
exploring uncertainties of climate projections to propose that
the envelope of uncertainties of climate-LMR projection can be
explored by systematically quantifying the three categories of uncer-
tainty that we discussed above: internal variability, model uncer-
tainty, and scenario uncertainty. Review on specific techniques to
explore each source of uncertainties can be found in Payne et al.
(this volume).

Experiences from quantifying uncertainty
of climate projections
For ocean-atmospheric general circulation models and biogeochem-
ical models, the Coupled Model Intercomparison Project Phase 5
(CMIP5) multi-model database allows assessment of uncertainty in
climate change projections across the dimensions illustrated in
Figure 1. Climate change projections were produced from .30
models, developed by different modelling groups with a standard
set of scenario experiments (Flato et al., 2013). The CMIP5
database allows some exploration of uncertainty, but comprehensive
categorization of uncertainty into structural uncertainty, parameter
uncertainty, and internal variability is not possible. The main chal-
lenges include the limited number of modelling groups that were
able tocontribute ensembles ofruns, somemodelsare fully independ-
ent of each other, and a lack of exploration of parameter uncertainty.
Ideally, the ensemble should consist of a random sample across the
uncertainty components in Figure 1. For complex inter-linked
models such as climate or climate-LMR models, exploring their full
scope of uncertainty would require substantial computational time
and other resources. Thus, a systematic approach is needed to effi-
ciently explore the envelope of uncertainties.

To further explore the uncertainty contributed by internal vari-
ability for each model, ensembles of climate simulations have been
run under identical forcing, but with each simulation initialized
with slightly different, but equally plausible, conditions (Rodgers
et al., 2015). The chaotic nature of climate variability quickly pro-
duces different climate trajectories in each ensemble member
(Wittenberg et al., 2014). By considering each of the trajectories as
a plausible outcome, the ensemble can be used to isolate that part
of projection uncertainty due to internal variability (Frölicher
et al., 2009; Deser et al., 2012).

Hawkins and Sutton (2009) analyse CMIP3 (i.e. the precursor of
CMIP5) projections to explore the contribution of internal variability
and model and scenario uncertainties to climate projections at global
and regional scales. They showed that the dominant sources of uncer-
tainty in surface air temperature projections vary with spatial scale
and time horizon, noting the importance of model uncertainty and

internal variation for mid-21st century regional projections. To
further illustrate the application of the framework used by Hawkins
and Sutton (2009) in the oceanic realm, we analysed the projection
uncertainties for sea surface temperature by combining CMIP5 pro-
jections and a large ensemble projections from the Earth System
Model of the Geophysical Fluid Dynamic Laboratory (GFDL
ESM2M model; Dunne et al., 2012, 2013; Rodgers et al., 2015).

We used the projection of SST as an example of exploring the sen-
sitivity of model projections to different sources of uncertainties.
Scenario uncertainty is estimated to be the difference between the
multi-model mean of projections from 15 CMIP5 models of two
21st century emissions scenarios: the low-emissions scenario RCP2.6
with an increased radiative forcing that peaks at �3 W m22 before
2100 then declines to 2.6 W m22 by 2100, and the high-emissions scen-
ario RCP8.5, with an increased radiative forcing of .8.5 W m22 by
year 2100 (Meinshausen et al., 2011). Model uncertainty is estimated
as the standard deviation of changes in SST (10-year running mean)
from each model projections. The internal variability is estimated as
the standard deviation of projections from 30 ensemble member simu-
lations of GFDL ESM2M (Rodgers et al., 2015).

Globally, the analysis shows that model uncertainty is dominant
in the medium term SST projection (2030–2050), while the long-
term (2080–2100) projection is dominated by scenario uncertainty
(Figure 2). The large model uncertainty over the medium term
reflects the large variations in regional scale biases in the models.
Although the importance of internal variability is second to
model uncertainty in near term projection (2010–2030), its relative
importance decreases rapidly further into the future.

The relative importance of different uncertainty sources also
varies between different regions. In the Northeast Atlantic (North
Sea Large Marine Ecosystem; Pauly et al., 2008), the importance
of scenario uncertainty is smaller compared with those projections

Figure 1. Schematic example illustrating cascades of uncertainties in
LMR projection (modified from Wilby and Dessai, 2010). For a
particular time horizon and spatial scale, the range, or envelope, of
possible outcomes includes contributions from scenario uncertainty
(green), model uncertainty (blue), and internal variability (orange). The
cascades of uncertainties apply to each of the sub-components of
climate-LMR models. Uncertainties from each model sub-component
may be additive or multiplicative. In this schematic diagram, the width
of each uncertainty level does not imply the magnitude of the
uncertainty. For example internal variability may be larger than
scenario uncertainty and vice versa. This figure is available in black and
white in print and in colour at ICES Journal of Marine Science online.
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at the global scale, while model uncertainties and internal variability
become the dominant uncertainty sources. The internal variability
in the Northeast Atlantic may represent known properties of in-
terannual and multidecadal climate and oceanographic variability
such as NAO and AMO (Viles and Goudie, 2003; Beaugrand
and Kirby, 2010). In the Northeast Pacific (Gulf of Alaska Large
Marine Ecosystem), internal variability becomes a dominant
source of uncertainty representing properties, such as ENSO and
Pacific Decadal Oscillation (PDO). In both basin-scale examples,
the internal variability of SST is a bigger contribution to projection
uncertainty than in the global scale projection (Figure 3). Moreover,
in the short to medium term, the projected increase in SST is not
sensitive to different emission scenarios, both globally and in
the NE Atlantic and NE Pacific (Figure 3). However, long-term
warming is much more sensitive to different emission scenarios,
particularly at the global scale. We anticipate the increased import-
ance of internal variability observed at the basin scale may be even
more prominent when examining smaller spatial scales.

In addition to highlighting the relative contribution of different
sources of uncertainty, this exploration of uncertainty suggests strat-
egies to prioritize investment to improve our understanding of spe-
cific types of uncertainties. In the example presented here, the large
model uncertainties in the projections of SST in the Northeast
Atlantic call for better understanding of key processes that may be
represented differently among models. In the Northeast Pacific,
where large internal variability is difficult to reliably predict, the
medium term effects of greenhouse gas emission will be difficult
to separate from natural variability. This further highlights the
need for better understand interannual variability and thus the
need for longer term observational records.

Systematic exploration of climate-LMR projection
uncertainties
Systematic exploration of the components of uncertainty in both space
and time dimensions in a manner analogous to examples from physical
climate model projections (Figure 3) is critical for moving quickly
toward refined uncertainty bounds on climate-LMR projections.
Thus, exploration of uncertainties within climate-LMR projections
would include: (i) making projections from ensemble members of

models with different properties of internal temporal or spatial
variability, (ii) making projections from ensemble members of models
withdifferent model structure and parameter values, and(iii) generating
projections that are based on different climate and fishing scenarios.

The conditions to systematically explore uncertainties within
climate-LMR projections already exist. For fish and fisheries
models, attempts to explore the full matrix of uncertainties (particu-
larly model uncertainty with scenario uncertainty) have been made
fora limited number of fisheries orstocks (Table 2).Existingexamples
mainly involve Management System Evaluations in which the per-
formance of different models is assessed under different management
scenarios (Link et al., 2012). Methods such as Monte-Carlo simula-
tion, Bayesian statistical frameworks, and a plethora of quantitative
methods also provide a basis for exploring both the parameter and
structural components of model uncertainty (Hill et al., 2007;
Hollowed et al., 2013). Moreover, various statistical approaches are
available to analyse the properties of different components of uncer-
tainty, and how they contribute to the full scope of uncertainty
(Saltelli et al., 2000). Furthermore, initiatives such as the fisheries
component of the Inter-Sectoral Impact Model Intercomparison
Project (Warszawski et al., 2014), which aim to develop LMR projec-
tion databases for climate-fisheries assessment that are similar in
nature to CMIP now been established. Such a database would facili-
tate collaborative efforts of LMR research communities to explore the
full scope of uncertainties.

A remaining knowledge gap in climate-LMR uncertainty ex-
ploration is the limited understanding of uncertainties arising
from internal variations in the ecological system or fishing scenarios
in projecting LMR changes, as well as their interactions with internal
variability at different temporal and spatial scales. The linkages
between physical and biogeochemical ocean changes and ecosystem
responses are likely to be non-linear and may also involve
thresholds; thus the resulting pattern of internal variability of
climate-LMR model projections are likely to be more complex.
For example, the actual response of LMRs to a particular level of en-
vironmental change may be limited by predator—prey interactions,
or altered by species-specific sensitivity and adaptability to environ-
mental fluctuations (Foden et al., 2013).

Exploration of internal variability in climate-LMR projections
can be done by comparing projections from ensemble members of

Figure 2. The relative importance of each source of uncertainty in annual mean sea surface temperature projection is shown by the fractional
uncertainty for (a) global mean, (b) Northeast Atlantic, and (c) Northeast Pacific in the 21st century. Uncertainties are separated into three
components: internal variability (orange), model uncertainty (blue), and scenario uncertainty (green). The percentage of total uncertainty is
calculated from dividing the level of uncertainty from the specific component by the sum of the three types of uncertainties. For internal variability,
the standard deviation of annual mean SST from the GFDL ESM2M ensemble is calculated year by year. The same procedure has been applied for
model uncertainty, but a 10-year running mean (longer than the typical ENSO period) is first applied to the individual CMIP5 model projections.
This figure is available in black and white in print and in colour at ICES Journal of Marine Science online.
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a single model with different sets of initial conditions. For example,
we used three versions of Dynamic Bioclimate Envelope Model
(DBEM) (Cheung et al., 2011) to project changes in maximum po-
tential catch of sablefish (Anoplopoma fimbria) in the Northeast
Pacific (Gulf of Alaska Large Marine Ecosystem) from 2000 to
2060 (Figure 4). Specifically, we explored the effects of internal vari-
ability of ocean conditions using 20 different ensemble member
projections from the GFDL ESM2M (Rodgers et al., 2015). We
also compared the relative contribution of uncertainties from in-
ternal variability of ocean conditions, structural uncertainties of
DBEM, and uncertainty from different climate scenarios (RCP 2.6
and 8.5).

The results suggest that internal variability is a dominant source
of uncertainty for sablefish in the Northeast Pacific (Gulf of Alaska
Large Marine Ecosystem) by 2060 relative to 2000, followed by the
structural uncertainties of DBEM. Scenario uncertainty contributes
,10% of the total uncertainty. This is broadly consistent with the
projected SST changes in this region, with internal variability con-
tributing �40–70% of the total uncertainty over the time frame
of 2000–2060 (Figure 2). However, model uncertainty is substan-
tially lower for sablefish projections relative to SST projections, pos-
sibly because the structural difference between CMIP5 models (used
in SST projection) is much larger than those between the three ver-
sions of DBEM (used in sablefish projection). Also, in addition to
SST, DBEM projections are driven by other ocean-biogeochemical
variables, such as oxygen and net primary production (Cheung
et al., 2011). Internal variability of multiple oceanographic properties
may have magnified the internal variability of the DBEM projections.

Since DBEM outputs represent mainly long-term trend of
potential catches, interannual variation of reported catches is sub-
stantially higher than the internal-variability of the projections
(Figure 5). DBEM does not represent some processes that contribute
to interannual variability of catches such as recruitment variability
and changes in fishing effort. Besides spawning stock abundance,
recruitment variability could be dependent on both physical (tem-
perature, wind, and current) and/or biological (primary productiv-
ity, predation pressure) at different spatial and temporal scales
(Houde, 2008). The relative importance of these factors and the
processes contributing to recruitment vary between species. In
addition, catches are also dependent on changes in fishing effort
which can be dependent fisheries management (e.g. quota),
social-economics factors (e.g. price of fish and cost of fishing),

and fishers’ behaviour. DBEM does not resolve many of these pro-
cesses and does not have species-specific recruitment submodel.
Therefore, DBEM is not expected to represent the actual interannual
variability of the catch. On the other hand, DBEM is structured to
represent the long-term trends of resource productivity. The long-
term trend (20-year running mean) of the reported catch of sablefish
falls within the range of trajectories of the projections (Figure 5).

The example of the sablefish highlights the need to carefully con-
sider the actual processes that are represented by the sample of LMR
models in quantifying uncertainty from model ensembles. This
challenge applies to both ocean biogeochemical and LMR models
(e.g. Jones and Cheung, 2015; Cabré et al., 2015). For instance, the
relatively coarse-resolution Earth System Models do not capture po-
tentially large random variability associated with submesoscale and
mesoscale ocean features such as fronts, eddies, and filaments (Stock
et al., 2011).

A standardized set of climate-LMR scenarios is needed to quantify
scenario uncertainty for climate-LMR projections. These scenarios
must be reconciled with a range of different realizations of future
emission (e.g. IPCC AR5’s Representative Concentration Pathways,
RCPs) (Moss et al., 2010) and social-economic development (e.g.
Shared Socio-economic Pathways or the Sustainable Development
Goals) (Griggs et al., 2013; Hunter and O’Neill, 2014). However, emis-
sions scenarios only describe broad-brush societal changes in the 21st
century. Fishing sector-specific storylines concerning management,
aquaculture, and technological development, and demand for fish in
countries across the economic development spectrum at global and re-
gional scales are also needed. Such factors would ultimately affect the
magnitude and distribution of fishing effort. Trajectories of other
human marine-related activities that drive changes in marine ecosys-
tems should also be included (Figure 6). Development of these scen-
arios requires interdisciplinary collaboration between natural and
social scientists (Österblom et al., 2013). Although, there are currently
independent efforts to develop such scenarios at global and regional
scales (e.g. Barange et al., 2014; Jones et al., 2015), community-wide
effort in developing standardized sets of scenarios would facilitate con-
sistent comparison of LMR projections.

Building confidence and constraining the scope
of plausible projections with observations
Observations across different scales are critical for building confi-
dence in projections and reducing the scope of LMR uncertainty

Figure 3. Changes in annual average sea surface temperature (10-year running mean) for (a) global mean, (b) Northeast Atlantic, and (c) Northeast
Pacific relative to the 1986–2005 mean. SST observations (black line) are based on Smith et al. (2008). The uncertainty area was calculated by adding
and subtracting the errors from each uncertainty source (internal variability, model uncertainty, scenario uncertainty) to and from the
ensemble-mean projection of 15 CMIP5 models. Errors from different uncertainty sources are assumed to be additive. This figure is available in black
and white in print and in colour at ICES Journal of Marine Science online.
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by constraining parameters, model structures, and eliminating im-
plausible solutions. Model metrics derived from observations can be
compared with model outputs to obtain a quantitative assessment
of model skill. Model metrics that are of particular interest for
LMR models include species distributions, community structure,
abundance and fisheries catches (Table 3). These data are generally
available for broad-scale evaluation.

Different LMR models may vary in their ability to represent
seasonal cycles, interannual, and/or long-term (decadal or longer)
trends, with skill at one scale not always implying skill at others
(Table 3). To assess confidence in the temporal properties
of climate-LMR projections, we suggest three possible tiers of
evaluation that involve the use of observational data to assess
consistency with: (i) mean observed spatial patterns or seasonal
climatologies across the scale of interest, (ii) previously observed

responses to climate variability, and (iii) observed long-term
trends attributable to climate change, fishing, and other human
drivers. In practice, the ability to assess models across all three
tiers is often limited by data availability, particularly the
paucity of the long-term, comprehensive, and high-quality data-
sets required to assess models against the often subtle trends in
tier 3. Comparisons between LMR data and model projections
are also challenging due to issues of consistency between time
frame and spatial scales, as well as the confounding effects of
multiple human pressures, such as climate and fishing
(McOwen et al., 2014). These challenges should not, however,
preclude improving confidence in LMR-climate projections.

Confidence in climate-LMR model projections can arise from
model evaluation across a subset of tiers, as well as the reliance of
models on robust physiological and ecological principles (Stock

Table 2. Selected case studies that explored different aspects of uncertainties in projections of aquatic (marine and freshwater) biological
resources under climate change.

Spatial scale Selected case studies Explored uncertainties and conclusions

Global Variability of projections of distribution and patterns of species
turnover across three different species distribution models
for over 800 commercially exploited fish and invertebrates
in the world under two greenhouse gas emission scenarios
(Jones and Cheung, 2015).

– Structural uncertainties of species distribution models

– Scenario uncertainties of greenhouse gas emission
pathways

– Larger variability in projections exists between greenhouse
gas emission scenarios (RCP2.6 and RCP8.5) than between
three different species distribution models

Regional (UK waters) Projecting changes in maximum catch potential and
profitability from fishing 31 key commercially targeted fish
species primarily inhabiting UK waters using different
climate models, species distribution modelling approaches,
and socio-economic scenarios (Jones et al., 2015). Three
fisheries and socio-economic scenarios were designed based
on key variables identified in the Alternative Future Scenario
for Marine Ecosystems scenarios

– Structural uncertainties of species distribution models and
climate models

– Scenario uncertainties of greenhouse gas emission,
fisheries, and socio-economics pathways

– Scenario (climate, fisheries, and socio-economic)
uncertainty dominates over structural uncertainty of
climate and biological models

Regional (Central
North Pacific
Ocean)

Uncertainty of a trophodynamic model (Ecopath with Ecosim)
was explored using Monte-Carlo simulation. Confidence
limits of key input parameters were set based on the
reliability of the data, as indicated by the data type. Results
from 500 dynamic simulations (each involving up to several
thousand iterations to find a balanced model) were used to
construct 95% confidence intervals for the derived biomass
time series (Kearney et al., 2012)

– Parameter uncertainty of the ecological models

Regional (Eastern US
coast)

Using experimentally derived thermal tolerance limits to
project range shift of grey snapper (Lutjanus griseus) in
estuaries along eastern US coast. Projections were driven by
temperature simulated from 23 different climate models,
two thermal tolerance metrics under three different
emission scenarios (Hare et al., 2012)

– Parameter uncertainty of range shift model

– Structural uncertainties of climate models

– Scenario uncertainties of greenhouse gas emission
pathways

– Different species distribution models contributed the
largest variation in projections, followed by different
GCMs. The contribution of variability from different
GCMs increased over time and to a level that is
comparable with variability from different species
distribution models for end of 21st century projections.
Different observation datasets had a small influence on
the overall variability of the projections

Regional (freshwater
ecosystems in
France)

Projection of distribution shifts of 35 species of freshwater fish
in France across 100 random subsets of observation data,
seven species distribution models, and climate projections
from 12 climate models, resulting in 8400 different potential
futures projections (Buisson et al., 2010)

– Parameter uncertainty of species distribution models

– Structural uncertainties of species distribution models and
climate models

– Scenario uncertainty of greenhouse gas emission pathways

– Uncertainty about thermal limits of the species dominates
over model or scenario uncertainties
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et al., 2011). Real caveats, however, are needed. Observational
limitations also suggest that great care should to be taken elimin-
ating particular projections from consideration within an ensem-
ble framework. Thus, a coarse culling of grossly inconsistent
simulations (Overland et al., 2011) is suggested rather than
attempting to finely weight models based on nuanced differences
in model-data fit. Even if model projections fit well with observa-
tional data, it does not guarantee that the model can accurately
predict future changes, particularly when future conditions (en-
vironmental conditions or human activities) lie outside the
bounds of historical conditions. In addition, a good fit between
model projections and observational data could, on occasion,
be more indicative of over-parameterization rather than predic-
tion skill.

Observation data and model metrics
In the paragraphs that follow, we review available LMR data and
their potential use as model metrics for evaluating LMR projections
across the three tiers of evaluation described previously. We focus on
the utility of three broad categories of LMR observations: fisheries-
dependent data, scientific surveys, and species occurrence records.
Similar efforts focusing on metrics for physical climate models
(Knutti and Sedláček, 2013) and biogeochemical/plankton
foodweb models (Stock et al., 2014b) are also being undertaken.
We also identify key uncertainties associated with such observation-
al data, as these would complicate their use in assessing the reliability
of LMR projections.

Fisheries-dependent data
Fisheries catch data are particularly useful for Tiers 1 and 2 evalua-
tions as they are of direct relevance to LMRs and their broad spatial,
temporal, and taxonomic coverage. Total catch potential can be esti-
mated from the maximum catch of historical time-series, under
certain assumptions concerning fishing effort (Cheung et al.,
2008; Friedland et al., 2012). Moreover, spatial patterns and tem-
poral changes in catch volume (Cheung et al., 2013c) and functional

Figure 5. Comparison between projected changes in annual mean
catch potential (relative to 1971–2000) using the three versions of
DBEM and 20 GFDL ESM2M ensemble members under the RCP8.5
scenarios with the reported catches (from SAU: www.seaaroundus.org)
of sablefish in the Northeast Pacific (Gulf of Alaska Large Marine
Ecosystem). Reported catches are also smoothed by a 20-year running
mean.

Figure 4. Projected changes in maximum potential catches of
Anoplopoma fimbria from 2000 to 2060 under climate change. The
projections were generated from using three versions of DBEM
(Cheung et al., under review), driven by outputs from GFDLESM2M.
Internal variability was estimated from projected changes in catch
potential driven by outputs from 20 ensemble members of GFDL
ESM2M (Rodgers et al., 2015). (a) Projected changes in maximum
potential catch and their standard deviation resulting from the three
different types of uncertainties. (b) The relative contribution of each
type of uncertainty, expressed as the proportion of total uncertainty,
and (c) the probability of projecting a decrease in catch potential for
.0% (dashed line), 2% (dotted line), and 5% (solid line). Model
uncertainty represents variation of projections from the three versions
of DBEM. Scenario uncertainty represents variations in projections
between RCP2.6 and RCP8.5. This figure is available in black and white in
print and in colour at ICES Journal of Marine Science online.
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and taxonomic composition (Cheung et al., 2013b) of fisheries
catch can be obtained from global fisheries databases. Species com-
position can be aggregated by body size classes (for size-based LMR
models; Blanchard et al., 2012), functional role (for functional
group trophodynamic models; Christensen and Walters, 2004),
and by species (for species distribution models; Cheung et al.,
2011). Fisheries catch data can be obtained from the Sea Around
Us (SAU) project (www.seaaroundus.org), which provides spatially
explicit estimates of global catches from 1950 onward. In addition,
the recent effort of SAU to reconstruct catches that are not reported
in the United Nations Food and Agriculture Organization landings
statistics further improves the utility of such data for use as a metric
for model comparisons (e.g. Zeller et al., 2006). For example, in the
Northeast Atlantic, fisheries catch and effort data since the early 20th
century can be used to understand the ability of LMR models to re-
produce changes driven by the Atlantic Multidecadal Oscillation
and the NAO (Kerby et al., 2013). Similar examples of the potential
use of long-term series of fish and fisheries data are also available in
the Northeast Pacific (Lindegren et al., 2013), and large pelagic long-
line catch data are also available for ocean basins. As such datasets
are spatially explicit, the estimated catch per unit effort can be
used as an indicator of the distribution of large pelagic fish, includ-
ing tunas, billfish, and sharks (Myers and Worm, 2003). Annual and
decadal patterns of catches and their compositions can be assessed to
understand the ability of the model to reproduce interannual and
long-term changes in fisheries catches. Interpretation of fisheries
catch data, however, must be done with care as changes or differ-
ences in fishing effort, gear, regulations, taxonomic identification,
economics, or human behaviour can strongly affect the quantity,
composition, and location of catches (Pinsky and Fogarty, 2012).
For this reason, determining whether observed changes in catch
data are caused by climate, ecology, or human behaviour can be
complicated (e.g. the sablefish case study presented above).
Fisheries-dependent data have substantial uncertainties because of
inconsistent data quality and biases in sampling methods, timing,
and location. Fisheries catches and landings data may be underre-
ported (Zeller et al., 2006), over-reported (Watson and Pauly,
2001) or misreported (Kleisner et al. 2013), and the reliability and
accuracy of the data may change over time. Also, biases in the loca-
tion and timing of fishing activities render it challenging to stand-
ardize and use fisheries-dependent catch per unit effort data as an
index of abundance (Maunder et al., 2006). There may therefore
be biases in using such data to interpret resource abundance and dis-
tribution (Walters, 2003).

Scientific survey data
Scientific surveys are useful across all three tiers of evaluation. They
can provide spatial and temporal patterns of abundance, biomass,
biodiversity, and distribution. Among the benefits of scientific
surveys is the use of standardized and repeatable methods, stratified
random or fixed design to facilitate statistical inference, and docu-
mented survey locations so that both species presence and absence
can be known. These properties make it more likely to attribute
observed changes to particular drivers, such as fishing, pollution,
and climate change, compared with fisheries data. For example,
data from the California Cooperative Oceanic Fisheries
Investigations (CalCOFI) (Bograd et al., 2003) for the California
Current Large Marine Ecosystem, which is strongly affected by
decadal to multidecadal atmospheric oscillations, such as ENSO
and PDO, provide detailed documentation of ecological changes
since 1951. The CalCOFI data describe the abundance of plankton,
including larval fish. A time series of larval fish abundance provide a
useful proxy for adult fish abundance (Koslow et al., 2013). Some
surveys further record information on oceanographic conditions,
which might be useful for simultaneously assessing the skill of the
climatic and ecological components of LMR models. Although a
number of surveys available have been sampling for more than
four decades, care must be taken to ensure that large changes in
survey methods have not biased the time series. A common stand-
ardization is to ensure that the same region has been surveyed con-
sistently through time. Also, bias correction factors may be available
to account for changes in survey methods (e.g. Ohman and Smith,
1995).

Although survey data can provide estimates of large-scale
changes in the distribution of relative abundance or biomass of
LMR (e.g. Pinsky et al., 2013), they are regional in scale, typically
conducted during a certain season, and are designed to sample a spe-
cific set of species or size classes (e.g. large groundfish). Different
surveys also vary in time frame, and availability of long time-series
survey data are limited. On the other hand, survey data are available
for a range of ecosystem types (from the tropics to high latitudes),
thereby allowing the examination of model performance across eco-
logical gradients.

Species occurrence records
A major biological response to ocean changes is a shift in the distri-
butions of marine species (Pinsky et al., 2013; Poloczanska et al.,
2013), which can have further implications for marine ecosystems

Figure 6. Schematic diagram showing an example of potential standardized sets of scenarios to be developed to explore scenario uncertainties. The
red, yellow, and green lines represent different scenario pathways to be explored by climate-LMR models. Anthropogenic impacts may include
contaminant level, invasive species, and habitat change. This figure is available in black and white in print and in colour at ICES Journal of Marine
Science online.
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and LMR (Cheung et al., 2010, 2013b). It is thus desirable for LMR
models to realistically predict distributions for a wide range of
species. A range of species distribution models have been applied
to model LMRs under climate change (e.g. Jones and Cheung,
2015). The reliability of predicted species distributions are often
examined using geo-referenced species occurrence records and
test statistics, such as the area under curve (AUC) of the receiver op-
erating characteristics. These records are collated from a range of
sources including museum collections, scientific expeditions and
surveys, and fisheries records. Many are now publicly accessible
through databases, such as the Global Biodiversity Information
Facility (Robertson et al., 2014) and the Ocean Biodiversity
Information System (OBIS) (Costello et al., 2007), and have fre-
quently been standardized for taxonomy and checked for quality.
Species occurrence records have the advantage in having a much
broader spatial and taxonomic coverage than any single data
source (e.g. from scientific survey only). However, problems with
taxonomic misidentification, common names, synonyms, and
errors in georeferencing are still present. Confidence in species oc-
currence data may also be reduced due to sampling bias (Webb
et al., 2010). Specifically, information on locations where unsuccess-
ful sampling has occurred is not always available, making it difficult
to determine the areas where specific species are absent and therefore
to interpret test statistics such as the AUC (Pearce and Boyce, 2006).

To help inform the use of uncertain observational data in asses-
sing model projections, a framework has been proposed to system-
atically assess the level of uncertainty associated with observational
data particularly for climate change impact assessment (O’Connor
et al., 2015). This framework is based on evidence combined from
theory, experiments and historical data with statistical analysis
being undertaken to attribute any signals in observational data to
climate change, thereby building confidence in the model. Such a
framework will help identify cases where observational data are
too uncertain to help assess model outputs, e.g. with insufficient
temporal and spatial coverage of observational data to reveal under-
lying trends and patterns.

Post-processing of LMR model outputs is generally needed
before they can be compared with empirical data, as there will inev-
itably be differences between LMR models due to variations in
model structure and other factors. For example, output from
species-based LMR models will be more directly comparable with
empirical data. However, species-based LMR models may only
include a subset of species or taxonomic groups that are included
in the empirical data. In contrast, output from size-based models
can easily be compared with aggregated LMR production.
However, the lack of explicit representation of taxonomic identity
in size-based models makes their output difficult to compare with
species- or population-specific data. Approximations can be made
in some cases to convert information from size- or trophic-based
models into taxonomic-based data. For example, the abundance
and production of organisms at size .1 m can be assumed to re-
present adult large pelagic fish and can thus be compared with
data from pelagic longline catches. Functional group-based LMR
models are intermediate between species- and size-based models,
and their outputs can be approximately converted to both
taxonomic- or size-based aggregations. Thus, having identified
the dominant taxonomic groups in a functional group, the dynam-
ics of that functional group can be assumed to be representative of
that taxonomic group. Functional groups that represent specific
taxonomic groups of interest can also be included explicitly in the
model (deYoung et al., 2004; Griffith and Fulton, 2014).Ta
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From quantifying uncertainty to assessing risk
Given the large sources of uncertainty discussed in previous sec-
tions, a systematic exploration of potential future LMR states and
the associated uncertainties is an important step towards a full
risk assessment that would allow us to understand the potential
impact of climate change on human societies through, for
example, diminished food security, income, or other ecosystem ser-
vices. In general, risk consists of two components: (i) the magnitude
of potential changes and (ii) the probability of occurrence of such
changes. Previous climatic risk assessments have involved both
quantitative risk-based approaches and more qualitative, social vul-
nerability approaches (Dessai and Hulme, 2004), or a combination
of both (Brown et al., 2012). Quantitative assessment generally
involves identifying climate hazards and their probability of occur-
rence. For example, Li et al. (2009) assessed the drought risk for
world crop production under climate change based on ensemble
results from 20 general circulation model (GCM) and six emission
scenarios. The ensemble of projections was used to estimate prob-
ability density functions of drought disaster frequency. Their
results show a consistent increase in drought risk in the middle
and end of the 21st century under climate change, leading to signifi-
cant reductions in yield for major crops. In our case study of project-
ing changes in potential catches of sablefish in the Northeast Pacific
(Figure 4), the probability of projecting a decrease in catch could be
quantified by systematically exploring the envelope of uncertainty.
Thorough estimates of risk can facilitate policy discussion for miti-
gation and/or adaptation in LMR management through the explor-
ation of the potential for regrets/no-regrets policies and the
associated costs and benefits (Polasky et al., 2011). This approach
to risk-based, ecosystem-based management has been developed
for certain marine systems, for example in Australia (Hobday
et al., 2011). One area of risk assessment that remains particularly
difficult to accurately quantify and yet important for guiding soci-
etal choices is an understanding of “tail risk”, or risk from extreme
and high-impact, but low-probability, events (Weitzman, 2011).

Future direction of climate-LMR projections
The many sources of uncertainty in climate-LMR projections and
computational cost will always limit our ability to fully explore un-
certainty in climate-LMR projections. However, the framework
described here provides a basis for concerted effort to improve esti-
mation of uncertainty ranges for climate-LMR projections and,
eventually, reduce these ranges. As was the case for physical
climate projections, a climate-LMR ensemble offers a starting
point. Systematic exploration of uncertainty space to identify prom-
inent components for a given spatial scale, time horizon, and vari-
able of interest can guide research investment and accelerate
progress toward more accurate estimates of uncertainty bounds.
More rigorous and standardized comparison with observations
(i.e. model metrics) must also play a central role in building confi-
dence in projections. In combination, these steps should produce
more robust risk estimates for policy formulation that will
promote LMR sustainability in a changing climate.

While adoption of the framework described herein will improve
climate-LMR projections, many challenges must still be overcome.
Various unknowns pose a major challenge to exploring the real
scope of uncertainties. Particularly, adaptive responses in nature
to climate change, and by society to changes in LMRs, are difficult
to predict and are poorly understood (Pinsky and Fogarty, 2012).
There are also “unknown-unknowns”, such as ecological tipping

points, which contribute to uncertainties and that cannot be
assessed with our current knowledge. This problem could be
partly addressed by developing scenarios that aim to explore the
sensitivity of outputs to such uncertainties, such as a scenario
incorporating high levels of biological and social adaptation.
Additionally, when exploring structural uncertainty of the models,
the sample of model structures is often assembled opportunistically
based on existing models rather than strategically based on a system-
atic sampling of all plausible model structures. Furthermore, differ-
ent climate-LMR models may not be entirely independent from
each other as the models may be parameterized with similar datasets.
This may result in biases in assessing the effects of model uncertain-
ties on projections (Hawkins and Sutton, 2009). On the other hand,
an ensemble of opportunities would be the most practical way to
tackle the challenge of quantifying climate-LMR projection uncer-
tainties and would help examine whether there is a need for
large-scale cooperative initiatives that provide substantial resources
and facilities to address these challenges.

Observational data that are available for comparison with LMR
models generally only cover a short period and a limited number of
regions. This magnifies the issues regarding uncertainties associated
with observation errors, making it more challenging to attribute
the reasons for any discrepancies between observations and model
predictions. Moreover, many LMR models use available observation-
al data for parameterization, thus the scope of using additional data
for model testing is limited. Careful selection of statistical and cross-
validation techniques can help mitigate this problem (Arlot and
Celisse, 2010). Further discussion and consensus among LMR mod-
ellers is needed to develop criteria to identify unrealistic models (i.e.
what type and how many discrepancies are needed before a model is
excluded from an ensemble). These challenges reiterate the need to
improve the sharing of observational data between scientists, insti-
tutes, and countries and develop data facilities to support their use
in testing climate-LMR projections (Hollowed et al., 2013).

Scenario development has not matured for LMR assessment.
Scenarios specifically tailored for marine-related sectors are very
limited, while existing assessments adopt scenarios that are used
for more general-purposes (Millennium Ecosystem Assessment,
2005). These scenarios may not account for key uncertainties in
the projected pathways of LMRs. In relation to this, fisheries
models linking fishing to changes in LMRs, and the socio-economic
conditions that are used to generate LMR scenarios are only starting
to be developed for global- and basin-scale LMRs, although much
effort has focused on regional- and local-scale fishing fleet dynamic
models (van Putten et al., 2012) and management strategy evalu-
ation models. All existing global- or basin-scale LMR models
either do not have explicit fisheries components or have simple
assumptions of stock- or region-specific fishing mortality rates.
Only recently has a global scale LMR model study included a spatial-
ly explicit fishing dynamics model to simulate changes in fishing
effort (Christensen et al., 2015). However, there is a need to
improve efforts such as this to develop additional LMR-specific
scenarios representing human activities before meaningful com-
parison of scenario uncertainties can be undertaken.

Understanding where uncertainty comes from and how it inter-
acts with model components is necessary to improve the interpret-
ation of model projections and to inform policy. Improving the
quantification of uncertainties will therefore be a major area of de-
velopment in climate-LMR projections to inform global and region-
al assessments of climate change impacts, vulnerability, and
adaptation on marine ecosystems and related sectors.
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Robertson, T., Döring, M., Guralnick, R., Bloom, D., Wieczorek, J.,
Braak, K., Otegui, J., et al. 2014. The GBIF integrated publishing
toolkit: facilitating the efficient publishing of biodiversity data on
the internet. PLoS ONE, 9: e102623.
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